Respuesta :

As written (without grouping symbols), there are no discontinuities.

If you mean ...
[tex]f(x)=\dfrac{x^{2}+5x+6}{2x+16}[/tex]
it will have a discontinuity where the denominator is zero, at x=-8.
Ver imagen sqdancefan

Answer:

The discontinuity of the function is at x=-8.        

Step-by-step explanation:

Given : Function [tex]f(x)=\frac{x^2+5x+6}{2x+16}[/tex]

To find : What are the discontinuities of the function?

Solution :

Discontinuity of the function is happen when denominator is zero.

First we factor the function,

[tex]f(x)=\frac{x^2+5x+6}{2x+16}[/tex]

[tex]f(x)=\frac{(x+2)(x+3)}{2(x+8)}[/tex]

Denominator = 0

[tex]2(x+8)=0[/tex]

[tex]x+8=0[/tex]

[tex]x=-8[/tex]

The discontinuity of the function is at x=-8.