Respuesta :
Assuming the path from [tex]a[/tex] to [tex]b[/tex] is a line segment, we can parameterize it by
[tex]\mathbf r(t)=(1-t)(1,1)+t(3,9)=(1+2t,1+8t)=(x(t),y(t))[/tex]
for [tex]0\le t\le1[/tex]. Then the work done by [tex]\mathbf f(x,y)[/tex] along this path, which I'll denote [tex]\mathcal C[/tex], is
[tex]\displaystyle\int_{\mathcal C}\mathbf f(x,y)\cdot\mathrm d\mathbf r=\int_{t=0}^{t=1}f(x(t),y(t))\cdot(2,8)\,\mathrm dt[/tex][tex]=\displaystyle\int_0^1(2(1+8t)^{3/2},3(1+2t)(1+8t))\cdot(2,8)\,\mathrm dt[/tex][tex]=\displaystyle4\int_0^1(1+8t)^{3/2}\,\mathrm dt+24\int_0^1(1+10t+16t^2)\,\mathrm dt[/tex]
[tex]=\dfrac{242}5+272=\dfrac{1602}5[/tex]
[tex]\mathbf r(t)=(1-t)(1,1)+t(3,9)=(1+2t,1+8t)=(x(t),y(t))[/tex]
for [tex]0\le t\le1[/tex]. Then the work done by [tex]\mathbf f(x,y)[/tex] along this path, which I'll denote [tex]\mathcal C[/tex], is
[tex]\displaystyle\int_{\mathcal C}\mathbf f(x,y)\cdot\mathrm d\mathbf r=\int_{t=0}^{t=1}f(x(t),y(t))\cdot(2,8)\,\mathrm dt[/tex][tex]=\displaystyle\int_0^1(2(1+8t)^{3/2},3(1+2t)(1+8t))\cdot(2,8)\,\mathrm dt[/tex][tex]=\displaystyle4\int_0^1(1+8t)^{3/2}\,\mathrm dt+24\int_0^1(1+10t+16t^2)\,\mathrm dt[/tex]
[tex]=\dfrac{242}5+272=\dfrac{1602}5[/tex]
To answer this question we need to apply the concept of work, that is
w = ∫ ₐᵇ F×ds
Solution is:
w = 523 J
w = ∫ₐᵇ F × ds
F = 2y³/² i + 3xy j and ds = dx i + dy j
Then F × ds = ( 2y³/² i + 3xy j ) × ( dx i + dy j )
F × ds = 2y³/² dx + 3xy dy
And = ∫ₐᵇ F×ds = ∫ₐᵇ2y³/² dx + 3xy dy a ( 1 , 1 ) b ( 3 , 9 )
∫ₐᵇ F×ds = 2y³/²∫dx + 3x ∫ydy
∫ₐᵇ F×ds = 2y³/²x |₁,₁³,⁹ + 3xy²/2 |₁,₁³,⁹
∫ₐᵇ F×ds = 2 × (9)³/² × (3) - 2 × (1 ) ³/²× (1) + 3 × (3)× (9)² /2 - 3 × (1)³/²/2
∫ₐᵇ F×ds = 162 - 2 + 364,5 - 1,5
∫ₐᵇ F×ds = 160 + 363
∫ₐᵇ F×ds = 523 J
Related Link : https://brainly.com/question/21588019