Answer: 12√3 square inches
Step-by-step explanation:
By the property of equilateral triangle,
Apothem = √3/2 × Side
⇒ Side = 2/√3 × Apothem
Here, apothem = 6 inches
Thus, the side of the given equilateral triangle = [tex]\frac{2}{\sqrt{3}}\times 6[/tex]
= [tex] \frac{12}{\sqrt{3}}[/tex]
= [tex]4\sqrt{3}[/tex] unit
Since, For an equilateral triangle,
[tex]\text{ Area} = \frac{\sqrt{3}}{4}\times (\text{ side})^2[/tex]
⇒ The area of the given equilateral triangle = [tex] \frac{\sqrt{3}}{4}\times (4\sqrt{3})^2[/tex]
[tex]=\frac{\sqrt{3}}{4}\times 48[/tex]
[tex]=12\sqrt{3}[/tex] square inches