Respuesta :

the answer is ten add me on snap: at jessea7772

Answer : The correct answer for mass of KBr = 2.53 g

Given :

Molarity of KBr solution = 0.85 M

Volume of KBr solution = 25 mL

Converting volume from mL to L ( 1 L = 1000 mL )

[tex] Volume of solution = 25 mL * \frac{1 L }{1000mL} [/tex]

Volume of solution = 0.025 L

Mass of KBr = ?

Mass of KBr can be calculated using following steps :

1) To find mole of Kbr :

Mole of KBr can be calculated using molarity .

Molarity : It is defined as mole of solute present in volume of solution in Liter .

It uses unit as M or [tex] \frac{mol}{L} [/tex]

It can be expressed as :

[tex] Molarity = \frac{mol of solute (mol)}{volume of solution (L)} [/tex]

Plugging value of molarity and volume

[tex] 0.85 \frac{mol}{L} = \frac{mol of Kbr}{0.025 L} [/tex]

Multiplying both side by 0.025 L

[tex] 0.85 \frac{mol}{L} * 0.025 L = \frac{mole of KBr}{0.025 L} * 0.025 L [/tex]

Mole of KBr = 0.02125

2) To find mass of Kbr :

Mass of Kbr can be calculated using mole . Mole can be expressed as :

[tex] Mole (mol) = \frac{mass (g) }{molar mass \frac{g}{mol} } [/tex]

Mole of Kbr = 0.02125 mol

Molar mass of KBr = 119.00 [tex] \frac{g}{mol} [/tex]

Plugging values in mole formula

[tex] 0.02125 mol = \frac{mass (g)}{119.00 \frac{g}{mol}} [/tex]

Multiplying both side by 119.00 [tex] \frac{g}{mol} [/tex]

[tex] 0.02125 mol * 119.00 \frac{g}{mol} = \frac{mass (g)}{119.00 \frac{g}{mol}} * 119.00\frac{g}{mol} [/tex]

Mass of KBr = 2.53 g