Respuesta :

The length of side b is 7.61 m.

Here's how the length was calculated:

Let:

length of side a = 12 centimeters
B = 36 degrees
C = 75 degrees

In order to solve an AAS triangle, use the three angles, add to 180 degrees to find the other angle, then, use The Law of Sines to find each of the other two sides.

A = 180 - (36 + 75) = 69 degrees

by using the law of sines:

a / sin A = b / sin B = c/ sin C

we will substitute the given values:

12 / sin (69) = b / sin (36)

b = unknown

12 / 0.93 = b / 0.59

12.9 = b / 0.59

b = 12.9 * 0.59

b =7.61 cm (length of side b)