Respuesta :

rearranging:-)
sqrt(2z - 6) = sqrt(z + 6
squaring both sides
2z - 6 = z + 6
2z - z = 6 + 6
z = 12 (answer)
[tex] \sqrt{2z - 6} - \sqrt{z + 6} = 0 [/tex]

[tex] \sqrt{2z - 6} = \sqrt{z + 6} [/tex]

[tex] (\sqrt{2z - 6})^2 = (\sqrt{z + 6})^2 [/tex]

[tex] 2z - 6 = z + 6 [/tex]

[tex] z - 6 = 6 [/tex]

[tex] z = 12 [/tex]

Since we squared both sides, we must check the solution on the original equation.

[tex] \sqrt{2(12) - 6} - \sqrt{12 + 6} = 0 [/tex]

[tex] \sqrt{24 - 6} - \sqrt{18} = 0 [/tex]

[tex] \sqrt{18} - \sqrt{18} = 0 [/tex]

[tex] 0 = 0 [/tex]

Since the solution makes for a true statement, z = 12 is the solution.

Answer: D. z = 12