Respuesta :
[tex]\bf \stackrel{h}{34}=100t-16t^2\implies 16t^2-100t+34=0\\\\\\ 8t^2-50t+17=0
\\\\\\
~~~~~~~~~~~~\textit{quadratic formula}
\\\\
\stackrel{\stackrel{a}{\downarrow }}{8}t^2\stackrel{\stackrel{b}{\downarrow }}{-50}t\stackrel{\stackrel{c}{\downarrow }}{+17}=0
\qquad \qquad
t= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a}[/tex]
[tex]\bf t=\cfrac{ - (-50) \pm \sqrt { (-50)^2 -4(8)(17)}}{2(8)}\implies t=\cfrac{50\pm \sqrt{2500-544}}{16} \\\\\\ t=\cfrac{50\pm\sqrt{1956}}{16}\implies t=\cfrac{50\pm\sqrt{4\cdot 489}}{16}\implies t=\cfrac{50\pm\sqrt{2^2\cdot 489}}{16} \\\\\\ t=\cfrac{50\pm 2\sqrt{489}}{16}\implies t=\cfrac{25\pm \sqrt{489}}{8}\implies t\approx \begin{cases} 5.88916805\\ 0.36083195 \end{cases}[/tex]
[tex]\bf t=\cfrac{ - (-50) \pm \sqrt { (-50)^2 -4(8)(17)}}{2(8)}\implies t=\cfrac{50\pm \sqrt{2500-544}}{16} \\\\\\ t=\cfrac{50\pm\sqrt{1956}}{16}\implies t=\cfrac{50\pm\sqrt{4\cdot 489}}{16}\implies t=\cfrac{50\pm\sqrt{2^2\cdot 489}}{16} \\\\\\ t=\cfrac{50\pm 2\sqrt{489}}{16}\implies t=\cfrac{25\pm \sqrt{489}}{8}\implies t\approx \begin{cases} 5.88916805\\ 0.36083195 \end{cases}[/tex]
The value of t for which the rocket's height is 34 feet
[tex]$ t \approx\left\{\begin{array}{l}5.88916805 \\ 0.36083195\end{array}\right.$[/tex]
Quadratic equation formula
The value of t for which the rocket's height is 34 feet.
[tex]h=100t-16t^2[/tex]
Where, h = 34
[tex]${34}=100 \mathrm{t}-16 \mathrm{t}^{2}[/tex]
[tex]\Longrightarrow 16 \mathrm{t}^{2}-100 \mathrm{t}+34=0$[/tex]
[tex]$8 t^{2}-50 t+17=0$[/tex]
By using quadratic equation formula, we get
Let a = 8, b = -50 and c = 17
[tex]{8} t^{2}-50 t+17=0[/tex]
Substituting the values of a, b, and c in the above equation, we get
[tex]$t=\frac{-(-50) \pm \sqrt{(-50)^{2}-4(8)(17)}}{2(8)}[/tex]
[tex]$\Longrightarrow t=\frac{50 \pm \sqrt{2500-544}}{16}$[/tex]
[tex]$\mathrm{t}=\frac{50 \pm \sqrt{1956}}{16}[/tex]
Separate the solutions
[tex]$\Longrightarrow \mathrm{t}=\frac{50 \pm \sqrt{4 \cdot 489}}{16}[/tex]
[tex]$\Longrightarrow \mathrm{t}=\frac{50 \pm \sqrt{2^{2} \cdot 489}}{16}$[/tex]
[tex]$\mathrm{t}=\frac{50 \pm 2 \sqrt{489}}{16}[/tex]
[tex]$\Longrightarrow \mathrm{t}=\frac{25 \pm \sqrt{489}}{8}[/tex]
then we get
[tex]$\Longrightarrow t \approx\left\{\begin{array}{l}5.88916805 \\ 0.36083195\end{array}\right.$[/tex]
Therefore, the value of t for which the rocket's height is 34 feet
[tex]$ t \approx\left\{\begin{array}{l}5.88916805 \\ 0.36083195\end{array}\right.$[/tex]
To learn more about quadratic formula equation
brainly.com/question/1538323
#SPJ2