Respuesta :

-1/2, 0, 3/2


this should be the answer, hopefully helped

Answer:  The solutions of the given equation in increasing order are

[tex]x=-\dfrac{1}{2},~0,~\dfrac{3}{2}.[/tex]

Step-by-step explanation:  The given equation is

[tex]4x^3-5x=|4x|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We are to solve the above equation and to list the solutions in increasing order.

We know that

[tex]|x|=a~~~~~~\Rightarrow a=x~~\textup{or}~~a=-x.[/tex]

So, from equation (i), we get

[tex]4x^3-5x=4x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)\\\\\textup{or}\\\\4x^3-5x=-4x~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iv)[/tex]

Solving equation (iii), we get

[tex]4x^3-5x=4x\\\\\Rightarrow 4x^3-9x=0\\\\\Rightarrow x(4x^2-9)=0\\\\\Rightarrow x=0,~~4x^2-9=0~~\Rightarrow x^2=\dfrac{9}{4}~~\Rightarrow x=\pm\dfrac{3}{2}.[/tex]

So, solutions of equation (i) are [tex]x=0,~\dfrac{3}{2},~-\dfrac{3}{2}.[/tex]

And, solving equation (iv), we get

[tex]4x^3-5x=-4x\\\\\Rightarrow 4x^3-x=0\\\\\Rightarrow x(4x^2-1)=0\\\\\Rightarrow x=0,~~~4x^2-1=0~~\Rightarrow x^2=\dfrac{1}{4}~~~\Rightarrow x=\pm\dfrac{1}{2}.[/tex]

So, solutions of equation (ii) are [tex]x=0,~\dfrac{1}{2},~-\dfrac{1}{2}.[/tex]

We can see that [tex]x=\dfrac{1}{2}~~\textup{and}~~x=-\dfrac{3}{2}[/tex] does not satisfy equation (i).

For [tex]x=\dfrac{1}{2},[/tex] we have

[tex]L.H.S.=4\times\dfrac{1}{8}-5\times\dfrac{1}{2}=-2,\\\\R.H.S.=|4\times\dfrac{1}{2}|=2\neq L.H.S.[/tex]

Similarly, for [tex]x=-\dfrac{3}{2},[/tex] we have

[tex]L.H.S.=4\times -\dfrac{27}{8}+5\times\dfrac{3}{2}=-6,\\\\R.H.S.=|4\times -\dfrac{3}{2}|=6\neq L.H.S.[/tex]

Thus, the solutions of the given equation in increasing order are

[tex]x=-\dfrac{1}{2},~0,~\dfrac{3}{2}.[/tex]