Respuesta :
For this case, the first thing to do is to graph the ordered pairs and join the points.
Then, we use the formula of distance between points:
[tex]d = \sqrt{(x2-x1)^2 + (y2-y1)^2} [/tex]
We have then:
For TP:
[tex]TP = \sqrt{(-2-8)^2 + (11-7)^2} [/tex]
[tex]TP = 10.77032961 [/tex]
For PQ:
[tex]PQ = \sqrt{(-4-(-2))^2 + (5-11)^2} [/tex]
[tex]PQ = 6.32455532 [/tex]
For QR:
[tex]QR = \sqrt{(2-(-4))^2 + (0-5)^2} [/tex]
[tex]QR = 7.81024968 [/tex]
For RS:
[tex]RS = \sqrt{(1-2)^2 + (7-0)^2} [/tex]
[tex]RS = 7.07106781 [/tex]
For ST:
[tex]ST = \sqrt{(8-1)^2 + (7-7)^2} [/tex]
[tex]ST = 7 [/tex]
Then, the perimeter of the figure is the sum of the lengths:
[tex]P = 10.7703296 + 6.32455532 + 7.81024968 + 7.07106781 + 7 P = 38.97[/tex]
Rounding off we have:
[tex]P = 39 [/tex]
Answer:
the perimeter of the image is:
39 units
Then, we use the formula of distance between points:
[tex]d = \sqrt{(x2-x1)^2 + (y2-y1)^2} [/tex]
We have then:
For TP:
[tex]TP = \sqrt{(-2-8)^2 + (11-7)^2} [/tex]
[tex]TP = 10.77032961 [/tex]
For PQ:
[tex]PQ = \sqrt{(-4-(-2))^2 + (5-11)^2} [/tex]
[tex]PQ = 6.32455532 [/tex]
For QR:
[tex]QR = \sqrt{(2-(-4))^2 + (0-5)^2} [/tex]
[tex]QR = 7.81024968 [/tex]
For RS:
[tex]RS = \sqrt{(1-2)^2 + (7-0)^2} [/tex]
[tex]RS = 7.07106781 [/tex]
For ST:
[tex]ST = \sqrt{(8-1)^2 + (7-7)^2} [/tex]
[tex]ST = 7 [/tex]
Then, the perimeter of the figure is the sum of the lengths:
[tex]P = 10.7703296 + 6.32455532 + 7.81024968 + 7.07106781 + 7 P = 38.97[/tex]
Rounding off we have:
[tex]P = 39 [/tex]
Answer:
the perimeter of the image is:
39 units
