Respuesta :

The slope intercept form of the line is given by:
 [tex]y = mx + b [/tex]
 The point-slope form is given by:
 [tex]y-yo = m (x-xo) [/tex]
 Where,
 m: slope of the line
 b: cutting point with the y axis
 (xo, yo): ordered pair that belongs to the line

  For line A:
 The slope is 
 [tex]m = \frac{1-3}{4-1} [/tex]
 [tex]m = \frac{-2}{3} [/tex]
 The cut point with the y axis is:
 [tex]b = \frac{11}{3} [/tex]
 Substituting values we have:
 [tex]y = -\frac{2}{3}x + \frac{11}{3} [/tex]

  For line B:
  The slope is given by:
  [tex]m=\frac{1-(-5)}{4-0}[/tex]
  [tex]m=\frac{1+5}{4}[/tex]
  [tex]m=\frac{6}{4}[/tex]
  [tex]m=\frac{3}{2}[/tex]
  Then, the equation of the line is:
  [tex]y-1= \frac{3}{2}(x-4) [/tex]

  Answer:
  
Option A