Respuesta :

Your answer will be C. There is a whole in the negative side of the graph

Answer:

option C

Step-by-step explanation:

[tex]f(x)=\frac{9x^2+9x-18}{3x+6}[/tex]

Lets factor the numerator

9x^2 +9x-18

9(x^2 +x-2)

9(x+2)(x-1)

Now we factor the denominator

3x+6

3(x+2)

[tex]f(x)=\frac{9(x+2)(x-1)}{3(x+2)}[/tex]

Cancel out x+2

So f(x)= 3(x-1)

now we graph f(x)

x     f(x)= 3(x-1)

-2    -9

-1       -6

0       -3

1         0

We cancelled out (x+2) at the top and bottom, x+2=0 so x=-2. Hence there is a whole at x=-2

Option C represents the graph f(x) because there is a hole at (-2,-9)