Can anyone help me with number 6 & 8?

[tex] \bf \begin{cases}
f(x)=x-3\\
g(x)=x^2+1\\
h(x)=-4x+1\\
-------&--------\\
(h\circ g\circ f)(x)=&(h\circ g(~f(x)~)\\
&h(~~g(~~f(x)~~)~~)
\end{cases}
\\\\\\
g(~~f(x)~~)=[f(x)]^2+1\implies g(~~f(x)~~)=[x-3]^2+1
\\\\\\
g(~~f(x)~~)=[x^2-6x+9]+1\implies \boxed{g(~~f(x)~~)=x^2-6x+10}
\\\\\\
h(~~g(~~f(x)~~)~~)=-4[g(~f(x)~)]+1
\\\\\\
h(~~g(~~f(x)~~)~~)=-4[x^2-6x+10]+1
\\\\\\
h(~~g(~~f(x)~~)~~)=-4x^2+24x-40+1
\\\\\\
h(~~g(~~f(x)~~)~~)=-4x^2+24x-39 [/tex]
6.
So for this, since the circle is open, you are going to be replacing x in g(x) with -4x + 1. It will be solved as such:
[tex] g(h(x))=(-4x+1)^2+1\\ g(h(x))=16x^2-8x+1+1\\ g(h(x))=16x^2-8x+2 [/tex]
8.
So firstly, we will need to solve g(f(x)) before we can do h(g(f(x))). So replace x in g(x) with x - 3:
[tex] g(f(x))=(x-3)^2+1\\ g(f(x))=x^2-6x+9+1\\ g(f(x))=x^2-6x+10 [/tex]
So now that we know what g(f(x)) is, we can solve for h(g(f(x))). To do this, replace x in h(x) with x^2 - 6x + 10:
[tex] h(g(f(x)))=-4(x^2-6x+10)+1\\ h(g(f(x)))=-4x^2+24x-40+1\\ h(g(f(x)))=-4x^2+24x-39 [/tex]
In short, h(g(f(x))) = -4x^2 + 24x - 39.