[tex]\sqrt{25 \times 10^{12} }[/tex]
In order to find it's square root, we could make it into two square roots.
[tex]\sqrt{25 \times 10^{12} } = \sqrt{25} \times \sqrt{10^{12}}[/tex]
Let us find the square roots of both radicals seprately.
[tex] \sqrt{25} =\sqrt{5*5}=5[/tex]
Each pair of a number inside square root gives a number out .
[tex]\sqrt{10^{12}} = \sqrt{10*10*10*10*10*10*10*10*10*10*10*10} \ \ ( \ makes \ 6 \ pairs \ of \ 10 )[/tex]
[tex]\sqrt{10*10*10*10*10*10*10*10*10*10*10*10} = 10*10*10*10*10*10[/tex]
[tex]= 10^6.[/tex]
Therefore,
[tex]\sqrt{25 \times 10^{12} }=\sqrt{25} \times \sqrt{10^{12}}={5 \times 10^6}[/tex]
[tex]\sqrt{25 \times 10^{12} } = {5 \times 10^6}[/tex]