Respuesta :

[tex]\sqrt{25 \times 10^{12} }[/tex]

In order to find it's square root, we could make it into two square roots.

[tex]\sqrt{25 \times 10^{12} } = \sqrt{25} \times \sqrt{10^{12}}[/tex]

Let us find the square roots of both radicals seprately.

[tex] \sqrt{25} =\sqrt{5*5}=5[/tex]

Each  pair  of a number inside square root gives a number out .

[tex]\sqrt{10^{12}} = \sqrt{10*10*10*10*10*10*10*10*10*10*10*10}   \ \ ( \ makes \ 6 \ pairs \ of \ 10 )[/tex]

[tex]\sqrt{10*10*10*10*10*10*10*10*10*10*10*10} = 10*10*10*10*10*10[/tex]

[tex]= 10^6.[/tex]

Therefore,

[tex]\sqrt{25 \times 10^{12} }=\sqrt{25} \times \sqrt{10^{12}}={5 \times 10^6}[/tex]

[tex]\sqrt{25 \times 10^{12} } = {5 \times 10^6}[/tex]