If the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The volume of a sphere is (4/3)π r3.

Respuesta :

Answer:

Average density of Sun is 1.3927 [tex]\frac{g}{cm}[/tex].

Given:

Radius of Sun = 7.001 ×[tex]10^{5}[/tex] km = 7.001 ×[tex]10^{10}[/tex] cm

Mass of Sun = 2 × [tex]10^{30}[/tex] kg = 2 × [tex]10^{33}[/tex] g

To find:

Average density of Sun = ?

Formula used:

Density of Sun = [tex]\frac{Mass of Sun}{Volume of Sun}[/tex]

Solution:

Density of Sun is given by,

Density of Sun = [tex]\frac{Mass of Sun}{Volume of Sun}[/tex]

Volume of Sun = [tex]\frac{4}{3} \pi r^{3}[/tex]

Volume of Sun = [tex]\frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}[/tex]

Volume of Sun = 1.436 × [tex]10^{33}[/tex] [tex]cm^{3}[/tex]

Density of Sun = [tex]\frac{ 2\times 10^{33} }{1.436 \times 10^{33} }[/tex]

Density of Sun = 1.3927 [tex]\frac{g}{cm}[/tex]

Thus, Average density of Sun is 1.3927 [tex]\frac{g}{cm}[/tex].