Answer:
Average density of Sun is 1.3927 [tex]\frac{g}{cm}[/tex].
Given:
Radius of Sun = 7.001 ×[tex]10^{5}[/tex] km = 7.001 ×[tex]10^{10}[/tex] cm
Mass of Sun = 2 × [tex]10^{30}[/tex] kg = 2 × [tex]10^{33}[/tex] g
To find:
Average density of Sun = ?
Formula used:
Density of Sun = [tex]\frac{Mass of Sun}{Volume of Sun}[/tex]
Solution:
Density of Sun is given by,
Density of Sun = [tex]\frac{Mass of Sun}{Volume of Sun}[/tex]
Volume of Sun = [tex]\frac{4}{3} \pi r^{3}[/tex]
Volume of Sun = [tex]\frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}[/tex]
Volume of Sun = 1.436 × [tex]10^{33}[/tex] [tex]cm^{3}[/tex]
Density of Sun = [tex]\frac{ 2\times 10^{33} }{1.436 \times 10^{33} }[/tex]
Density of Sun = 1.3927 [tex]\frac{g}{cm}[/tex]
Thus, Average density of Sun is 1.3927 [tex]\frac{g}{cm}[/tex].