The coordinates of the midpoint of line GH are M(−132,−6) M ( − 13/2 , − 6 ) and the coordinates of one endpoint are G(−4, 1)
The coordinates of the other endpoint are ( , )

Respuesta :

Since, the coordinates of the midpoint of line GH are M[tex](\frac{-13}{2}, -6)[/tex].

The coordinates of endpoint G are (-4,1)

We have to determine the coordinates of endpoint H.

The midpoint of the line segment joining the points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] is given by the formula [tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex].

Here, The endpoint G is (-4,1) So, [tex]x_1 = -4 , y_1=1[/tex]

Let the endpoint H be [tex](x_2,y_2)[/tex]

The midpoint coordinate M is [tex](\frac{-13}{2}, -6)[/tex].

So, [tex]\frac{-13}{2} = \frac{-4+x_2}{2}[/tex]

[tex]{-13} = {-4+x_2}[/tex]

[tex]{-13}+4 = {x_2}[/tex]

[tex]{x_2}=9[/tex]

Now, [tex]-6 = \frac{1+y_2}{2}[/tex]

[tex]-12 = {1+y_2}[/tex]

[tex]y_2= -13[/tex]

So, the other endpoint H is (-9,-13).