Respuesta :

Answer:


[tex]\frac{sin\alpha.cos\beta +cos\alpha.sin\beta}{cos\alpha.cos\beta}=tan\alpha +tan\beta[/tex]


Explanation:


Here are the steps to simplify the expression and obtain the identity.


1) Given:


[tex]\frac{si(\alpha+\beta)}{cos(\alpha)cos(\beta)}[/tex]


2) Use the identity sin(α + β) = sin(α)cos(β) + cos(α)sin(β)


[tex]\frac{sin\alpha.cos\beta +cos\alpha.sin\beta}{cos\alpha.cos \beta}[/tex]


3) Distributive property of division:


[tex]\frac{sin\alpha.cos\beta}{cos\alpha.cos \beta}+\frac{cos\alpha.sin\beta}{cos\alpha.cos \beta}[/tex]


4) Simplify common factors in numerators and denominators


[tex]\frac{sin\alpha}{cos\alpha }+\frac{sin\beta}{cos \beta}[/tex]


5) Definition of tangent ratio


tanα + tanβ


6) Conclusion


[tex]\frac{sin\alpha.cos\beta +cos\alpha.sin\beta}{cos\alpha.cos \beta}=tan\alpha +tan\beta[/tex]