Solve the system. x – 4y – z = 21 6x – 3y – z = –4 –x +2y –5z = 19 Answer: x =      , y =      , z =      

Respuesta :

Consider the given equations:

[tex]-x+2y-5z = 19[/tex]  (Equation 1)

[tex]6x-3y-z= -4[/tex]    (Equation 2)

[tex]x-4y-z=21[/tex]        (Equation 3)

Adding equations 1 and 3, we get

[tex]-x+2y-5z+x-4y-z = 19+21[/tex]

[tex]-2y-6z = 40[/tex]

So, we get [tex]-y -3z = 20[/tex] (Equation 4)

Multiplying equation 3 by '6', we get

[tex]6x - 24y-6z = 126[/tex]       (Equation 5)

Subtracting equation 5 from equation 2, we get

[tex](6x-3y-z)-(6x - 24y-6z) = -4-126[/tex]

[tex]6x-3y-z-6x + 24y+6z) = -4-126[/tex]

[tex]21y+5z = -130[/tex]     (Equation 6)

Multiplying equation 4 by '21' and adding it to equation 6, we get

[tex]-21y-63z+21y+5z = 420-130[/tex]

[tex]-58z = 290[/tex]

So, z = -5

Since, [tex]-y-3z = 20[/tex] [tex]-y+15=20[/tex] [tex]y=-5[/tex]

So, y=-5

Now, [tex]x-4y-z=21[/tex] [tex]x-4(-5)-(-5)=21[/tex] [tex]x+20+5=21[/tex] [tex]x+25=21[/tex] [tex]x= -4[/tex]

So, x = -4

Therefore, x = -4, y= -5 and z= -5 are the solutions to the given equations.