Respuesta :


Explanation:

To solve:

Note that:  " 62 [tex]\frac{1}{2}[/tex]  lbs. "  ;  

           ↔  can be written as:  " 62.5 lbs. " .

→  {since:

→   " ([tex]\frac{1}{2}[/tex])" = "(1 * 5) / (2 * 5)" = "([tex]\frac{5}{10}[/tex])" ;

                                                                       =  " 0.5 " (written as a decimal).

→  And as such:

      →   " 62  [tex]\frac{1}{2}[/tex] "    =    " 62  +  0.5 "  =   " 62.5 " .

______________________________________

→ Note that "cubic feet" ;  or "cubic foot" ;

             →  is a measurement of "volume" ; and can be written as:  " ft³ " .

______________________________________

Using a technique known as "dimensional analysis" ; as follows:

______________________________________

 →    100 lb  *  [tex]\frac{1 ft^3}{62.5 lb}[/tex]    =   __?__  ft³    

______________________________________

 →  The units of:  "lb."  cancel out (to " 1 " ) ;  

     →  {since:  "([tex]\frac{lb.}{lb.}[/tex])"   =   " 1 " .}.

 →  And we have:

 →    "(

[tex]\frac{100}{62.5}[/tex])"