Respuesta :

First multiply 5 on both sides to get rid of the five on the bottom.

[tex]\frac{1-7n}{5*5}[/tex][tex]>10*5[/tex]

[tex]1-7n>50[/tex]

Subtract 1 from both sides of the inequality.

[tex]1-1-7n>50-1[/tex]

[tex]-7n>49[/tex]

Divide -7 on both sides, and flip the inequality sign since we are dividing by a negative.

[tex]\frac{-7n}{7}[/tex][tex]>\frac{49}{-7}[/tex]

[tex]n<-7[/tex]

The solution to the inequality is n<-7.

[tex]Solution, \frac{1-7n}{5}>10\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-7\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-7\right)\end{bmatrix}[/tex]

[tex]Steps:[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:}5, \frac{5\left(1-7n\right)}{5}>10\cdot \:5[/tex]

[tex]\mathrm{Simplify}, 1-7n>50[/tex]

[tex]\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}, 1-7n-1>50-1[/tex]

[tex]\mathrm{Simplify}, -7n>49[/tex]

[tex]Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right), \left(-7n\right)\left(-1\right)<49\left(-1\right)[/tex]

[tex]\mathrm{Simplify}, 7n<-49[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}7, \frac{7n}{7}<\frac{-49}{7}[/tex]

[tex]\mathrm{Simplify}, n<-7[/tex]

The correct answer is n<-7

Hope This Helps!!!