Answer:
[tex]-2(3-2x)<x+3[/tex] Given,
[tex]-6+4x<x+3[/tex]: Distributive property,
[tex]-6+3x<3[/tex]: Subtraction property of order,
[tex]3x<9[/tex]: Addition property of order,
[tex]x<3[/tex]: Division property of order.
Step-by-step explanation:
We have been given an inequality. We are asked to match each step for solving the equation with reason.
[tex]-2(3-2x)<x+3[/tex]
Using distributive property, we will get:
[tex]-2\cdot3-(-2)\cdot2x<x+3[/tex]
[tex]-6+4x<x+3[/tex]
Subtract x from both sides:
[tex]-6+4x-x<x-x+3[/tex]
[tex]-6+3x<3[/tex]
Add 6 on both sides:
[tex]-6+6+3x<3+6[/tex]
[tex]3x<9[/tex]
Divide both sides by 3:
[tex]\frac{3x}{3}<\frac{9}{3}[/tex]
[tex]x<3[/tex]