Respuesta :
The point-slope form of a line:
[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (5, 6) and (3, 4). Substitute:
[tex]m=\dfrac{4-6}{3-5}=\dfrac{-2}{-2}=1\\\\y-6=1(x-5)\\\\y-6=x-5\qquad|\text{add 6 to both sides}\\\\y=x+1\qquad|\text{subtract x from both sides}\\\\-x+y=1\qquad|\text{change the signs}\\\\x-y=-1[/tex]
Answer:
slope-intercept form: y = x + 1
point-slope form: y - 6 = 1(x - 5)
standard form: x - y = -1
Hey there!
Given points:
...(5,6) and (3,4)
Slope-intercept form:
... y=mx+b
'm' is the slope and 'b' is the y-intercept.
Slope:
... (y₂-y₁)/(x₂-x₁)
... (4-6)/(3-5)
... -2/-2
...1
:
... y = x + b
... 4 = 3 + b
... b = 1
Slope-intercept form:
... y = x + 1
Hope helps!