Respuesta :

gmany

The point-slope form of a line:

[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (5, 6) and (3, 4). Substitute:

[tex]m=\dfrac{4-6}{3-5}=\dfrac{-2}{-2}=1\\\\y-6=1(x-5)\\\\y-6=x-5\qquad|\text{add 6 to both sides}\\\\y=x+1\qquad|\text{subtract x from both sides}\\\\-x+y=1\qquad|\text{change the signs}\\\\x-y=-1[/tex]

Answer:

slope-intercept form: y = x + 1

point-slope form: y - 6 = 1(x - 5)

standard form: x - y = -1

sid071

Hey there!

Given points:

...(5,6) and (3,4)

Slope-intercept form:

... y=mx+b

'm' is the slope and 'b' is the y-intercept.

Slope:

... (y₂-y₁)/(x₂-x₁)

... (4-6)/(3-5)

... -2/-2

...1

:

... y = x + b

... 4 = 3 + b

... b = 1

Slope-intercept form:

... y = x + 1

Hope helps!