PLEASE HELP! WILL MARK BRAINLIEST

1. Solve The Inequality & Graph The Solution: v-6≥4

2. Solve The Inequality & Graph The Solution: -5x<15

3. Solve The Inequality & Graph The Solution: 3k>5k+12

5. Solve The Compound Inequality: 2t≤-4 or 7t≥49

6. Solve The Equation. If There Is No Solution, Write No Solution (Show Work): |n+2|=4

7. Solve The Equation. If There Is No Solution, Write No Solution (Show Work): |2x-7|>1

8. Given A={1,2,3,4,5,6,7,8,9} & B={2,4,6,8}, What Is AuB ( The u is that one weird u like symbol)

9. Draw A Venn Diagram To Represent The Intersection & Union Of The Sets: P={1,5,7,9,13}, R={1,2,3,4,5,6,7}, & Q={1,3,5}

Respuesta :

1)

v - 6 ≥ 4

  +6   +6

v      ≥ 10

Graph: 10 -----------------→  the dot at 10 is filled in because of the "equal to" symbol

********************************************************************************************************

2)

-5x < 15

[tex]\frac{-5x}{-5} > \frac{15}{-5}[/tex]  divided by a negative so the symbol flipped

x > -3

Graph: -3 o------------------the dot at -3 is NOT filled in because it's NOT "equal to"

********************************************************************************************************

3)

3k > 5k + 12

-5k  -5k      

-2k >          12

[tex]\frac{-2k}{-2} < \frac{12}{-2}[/tex]   divided by a negative so the symbol flipped

k < -6

Graph: ←------------o -6   the dot at -6 is NOT filled in because it's NOT "equal to"

********************************************************************************************************

5)

2t ≤ 4      or    7t ≥ 49

[tex]\frac{2t}{2} \leq\frac{4}{2}[/tex]      or    [tex]\frac{7t}{7} \geq \frac{49}{7}[/tex]

 t ≤ 2      or      t ≥ 7

Graph: ←------- 2        7 ---------→   the dots at 2 and 7 are filled in

********************************************************************************************************

6)

| n + 2 | = 4

n + 2 = 4      or     n + 2 = -4

    -2   -2                 -2   -2

n      = 2        or     n       = -6

Answer: n = {2, -6}

********************************************************************************************************

7)

| 2x - 7 | > 1

2x - 7 > 1       or     2x - 7 < -1

     +7  +7                 +7   +7

2x      > 8       or     2x     <  6

    [tex]\frac{2x}{2} > \frac{8}{2}[/tex]             or       [tex]\frac{2x}{2} < \frac{6}{2}[/tex]

    x > 4          or         x < 3

Graph: ←----------o 3      4 o------------→

********************************************************************************************************

8)

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}    B = {2, 4, 6, 8}

A U B = {1, 2, 3, 4, 5, 6, 7, 8, 9}    union combines both sets

A ∩ B =  {2, 4, 6, 8}   intersection includes only those that are in BOTH sets

********************************************************************************************************

9)

P = {1, 5, 7, 9, 13}   R = { 1, 2, 3, 4, 5, 6, 7}    Q = {1, 3, 5}

P ∩ R ∩ Q = {1, 5}

P ∩ R = {7}  disregard 1 & 5 since they are already in P∩Q∩R

R ∩ Q = {3}  disregard 1 & 5 since they are already in P∩Q∩R

P ∩ Q = { }  disregard 1 & 5 since they are already in P∩Q∩R

P no intersection = {9, 13)

R no intersection = {2, 4, 6}

Q no intersection = {  }

If you can't figure out how to draw it based on the information I provided, please see the attached diagram. Note: Usially, you would only identify P, Q, R.  I identified the intersections so you would understand why those specific numbers are placed in the designated sections.





Ver imagen tramserran