Lori creates the following design for a T-shirt.



Lori found the areas of Triangle 1 and Rectangle 1. Find the areas of the remaining figures.

The area of Rectangle 1 is 8.68 square inches.

The area of Triangle 1 is 6.48 square inches.

The area of Rectangle 2 is ... square inches.

The area of Triangle 2 is ...  square inches.

The area of the whole figure is ... square inches.

Lori creates the following design for a Tshirt Lori found the areas of Triangle 1 and Rectangle 1 Find the areas of the remaining figures The area of Rectangle class=

Respuesta :

Solution-

From the figure,

AE = 2.4

EB = 2.8

BC = 11.7


Area of rectangle 1 = 8.68 sq.in

[tex]\Rightarrow FH \times HI=8.68[/tex]

[tex]\Rightarrow EB \times HI=8.68[/tex]  (∵ sides of the rectangle 2)

[tex]\Rightarrow 2.8 \times HI=8.68[/tex]

[tex]\Rightarrow HI=3.1[/tex]


Area of Triangle 1 = 6.48 sq.in

[tex]\Rightarrow \frac{1}{2}\times AE \times EG= 6.48[/tex]

[tex]\Rightarrow \frac{1}{2}\times AE \times (EF+FG)= 6.48[/tex]

[tex]\Rightarrow \frac{1}{2}\times AE \times (EF+HI)= 6.48[/tex]  (∵ sides of the rectangle 1)

[tex]\Rightarrow EF+3.1= 5.4[/tex]

[tex]\Rightarrow EF=2.3[/tex]

[tex]\Rightarrow BH=2.3[/tex]  (∵ sides of the rectangle 2)


[tex]BC = BH+HI+IC[/tex]

[tex]\Rightarrow 11.7= 2.3+3.1+IC[/tex]

[tex]\Rightarrow IC=6.3[/tex]


The area of Rectangle 2,

[tex]=EB\times BH =2.8\times 2.3=6.44\ sq.in[/tex]


The area of Triangle 2,

[tex]\frac{1}{2}\times GI \times IC=\frac{1}{2}\times EB \times IC=\frac{1}{2}\times 2.8 \times 6.3=8.82\ sq.in[/tex]


The area of the whole figure = Area of Triangle 1 + Area of rectangle 1 + Area of Triangle 2 + Area of rectangle 2

= 6.48+8.68+8.82+6.44=30.42 sq.in


Ver imagen InesWalston