Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = -4x \sin x^2 \sin (\cos x^2) \cos (\cos x^2)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \sin^2 (\cos x^2)[/tex]

Step 2: Differentiate

  1. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle y' = 2 \sin (\cos x^2) \Big( \sin (\cos x^2) \Big)'[/tex]
  2. Trigonometric Differentiation [Derivative Rule - Chain Rule]:                   [tex]\displaystyle y' = -2 \sin (\cos x^2) \cos (\cos x^2) (\cos x^2)'[/tex]
  3. Trigonometric Differentiation [Derivative Rule - Chain Rule]:                   [tex]\displaystyle y' = -2 \sin x^2 \sin (\cos x^2) \cos (\cos x^2) (x^2)'[/tex]
  4. Basic Power Rule:                                                                                         [tex]\displaystyle y' = -4x \sin x^2 \sin (\cos x^2) \cos (\cos x^2)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Otras preguntas