Respuesta :

To the nearest tenth the zeroes are:
[tex]x=-0.2, x=-0.7 \:and\: x=2.7[/tex]

EXPLANATION

[tex]f(x)=-5x^3+9x^2+12x+2[/tex]

The constant term is 2, and the coefficient of the highest degree is -5 so test all rational factors of

[tex] -\frac{2}{5}[/tex]

These are;

[tex] \frac{1}{5},\frac{2}{5},-\frac{1}{5}, -\frac{2}{5}[/tex]

[tex] f(-\frac{1}{5})=-5(-\frac{1}{5})^3++9( -\frac{1}{5})^2+12( -\frac{1}{5})+2[/tex]

[tex] f(-\frac{1}{5})=\frac{5}{125}+\frac{9}{25}-(\frac{12}{5})+2[/tex]

[tex]f(-\frac{1}{5})=\frac{5+45-300+250}{125}=\frac{0}{125}=0[/tex]

Good for us the very first one is a root. Therefore,

[tex]x=-\frac{1}{5}[/tex]

is a root. These also means that

[tex](5x+1)[/tex]

is a factor. Therefore we perform long division to find the other factors as follows.

We can now factor the polynomial as,

[tex]f(x)=-(5x+1)(x^2-2x-2)[/tex]

[tex]f(x)=-(5x+1)(x^2-2x-2)=0[/tex]

This implies that,

[tex]-(5x+1)=0[/tex]

Which gives us

[tex]x=-\frac{1}{5}=-0.2[/tex]

Or

[tex]x^2-2x-2=0[/tex]

[tex]\Rightarrow x^2-2x=2[/tex]

We complete the square to obtain,

[tex](x-1)^2=2+1[/tex]

[tex]\Rightarrow (x-1)^2=3[/tex]

Taking square root of both sides gives;

[tex]\Rightarrow x-1=\pm \sqrt{3}[/tex]

This implies

[tex]x=1-\sqrt{3}=-0.7[/tex]

[tex]x=1+\sqrt{3}=2.7[/tex]