(Help with this Please?)

The dimensions of a rectangular prism are shown below:

Length: 1 1/2
Width: 1 foot
Height: 2 1/2
The lengths of the sides of a small cube are 1/2 foot each.


Part A: How many small cubes can be packed in the rectangular prism? Show your work. (5 points)

Part B: Use the answer obtained in part A to find the volume of the rectangular prism in terms of the small cube and a unit cube. (5 points)

Respuesta :

Answer:

A) 30 cubes.

B) 30 units³.


Step-by-step explanation:

A) 1. Calculate the volume of the rectangular prism, as following:

[tex]Vr=(lenght)(width)(height)[/tex]

2. You have that:

- The length is: [tex]1^{\frac{1}{2}}ft=1.5ft[/tex]

- The width is: [tex]1ft[/tex]

- The heigth is: [tex]2^{\frac{1}{2}}ft=2.5ft[/tex]

3. Substitute these values into the formula:

[tex]Vr=(1.5ft)(1ft)(2.5ft)=3.75ft^{3}[/tex]

4. The volume of one cube is:

[tex]Vc=side^{3}[/tex]

5. The length of one side is: [tex]\frac{1}{2}ft=0.5ft[/tex]

6. Substitute this value into the formula:

[tex]Vc=(0.5ft)^{3}=0.125ft^{3}[/tex]

7. The number of small cubes that can be packed in the rectangular prism is:

[tex]cubes=\frac{Vr}{Vc}\\cubes=\frac{3.75ft^{3}}{0.125ft^{3}}\\cubes=30[/tex]

B) 1. The length, the width and the height of the rectangular prism in term of units cubes is:

[tex]Length=\frac{1.5ft}{0.5ft}=3units[/tex]

[tex]Width=\frac{1ft}{0.5ft}=2units[/tex]

[tex]Heigth=\frac{2.5ft}{0.5ft}=5units[/tex]

2. Therefore, the volume of the rectagular prism in terms of the small cube and a unit cube is:

[tex]Vr=(3units)(2units)(5units)=30units^{3}[/tex]

Answer:

30 cubes.

Step-by-step explanation: