Respuesta :
[tex]\displaystyle\\\\\sin\theta+\cos\theta= \sqrt{2}\\\\\sin\theta+\cos\theta= 2\times\frac{\sqrt{2}}{2}\\\\\implies~~\sin\theta=\cos\theta= \frac{\sqrt{2}}{2}\\\\\implies~~\theta=45^o\\\\\implies~~\tan\theta + \cot\theta=\tan45^o + \cot45^o=1+1=\boxed{\bf2}[/tex]
sin theta + cos theta = root2
Squaring both sides:
(sin theta + cos theta)^2 = 2
sin^2 theta + cos^2 theta + 2 sin theta cos theta = 2
1 + sin 2theta = 2
sin 2theta = 1
2 theta = 90
theta = 45
so tan theta + cot theta = 1 + 1
= 2