in this diagram, what is ac?

Answer:
AC = 10 units .
Step-by-step explanation:
Given : Triangle ABC.
To find : What is AC.
Solution : We have given Triangle ABC.
Triangle BCD is right angle triangle .
By the Pythagorean theorem :
[tex](BC)^{2} = (BD)^{2} + (CD)^{2}[/tex].
Plug the values .
[tex](17)^{2} = (BD)^{2} + (8)^{2}[/tex].
289 = [tex](BD)^{2} + 64[/tex].
On subtractin g 64 from both sides.
289 - 64 = [tex](BD)^{2}[/tex].
225 = [tex](BD)^{2}[/tex].
Taking square root .
BD = [tex]\sqrt{225}[/tex].
BD 15 units .
AB = AD+ BD
21 = AD + 15
AD = 21 -15
AD = 6 units .
Now , Triangle ACD is right angle triangle .
[tex](AC)^{2} = (6)^{2} + (8)^{2}[/tex].
[tex](AC)^{2} = 36 +64[/tex].
[tex](AC)^{2} = 100[/tex].
Taking square root
AC = 10 units .
Therefore, AC = 10 units .