3 Ni2+(aq) + 2 Cr(OH)3(s) + 10 OH− (aq) → 3 Ni(s) + 2 CrO42−(aq) + 8 H2O(l) ΔG∘ = +87 kJ/mol Given the standard reduction potential of the half-reaction Ni2+(aq) + 2 e− → Ni(s) E∘red = -0.28 V, calculate the standard reduction potential of the half-reaction CrO42−(aq) + 4 H2O(l) + 3 e− → Cr(OH)3(s) + 5 OH−(aq)

Respuesta :

Answer : The standard reduction potential, [tex]E^o_{(Cr^{+6}/Cr^{+3})}[/tex] is -0.13 V.

Solution : Given,

[tex]E^o_{(Ni^{2+}/Ni)}=-0.28V[/tex]

[tex]\Delta G^o=+87KJ/mole=+87000J/mole[/tex]       (1 KJ = 1000 J)

The net reaction is,

[tex]3Ni^{2+}(aq)+2Cr(OH)_3(s)+10OH^-(aq)\rightarrow 3Ni(s)+2CrO^{2-}_4(aq)+8H_2O(l)[/tex]

The half cell reactions are :

At cathode : [tex]Ni^{2+}(aq)+2e^-\rightarrow Ni(s)[/tex]       [tex]E^o_{(Ni^{2+}/Ni)}=-0.28V[/tex]

At anode : [tex]CrO^{2-}_4(aq)+4H_2O(l)+3e^-\rightarrow Cr(OH)_3(s)+5OH^-(aq)[/tex]  [tex]E^o_{(Cr^{+6}/Cr^{+3})}=?[/tex]

First we have to calculate the [tex]E^o_{cell}[/tex] by using formula,

[tex]\Delta G^o=-nFE^o_{cell}[/tex]

where,

[tex]\Delta G^o[/tex] = Gibbs's free energy

n = number of electrons in a net chemical reaction = 6 electrons

F = Faraday constant = 96485 C

[tex]E^o_{cell}[/tex] = standard cell potential

Now put all the given values in this formula, we get

[tex]+87000KJ/mole=-6\times (96485)\times E^o_{cell}\\E^o_{cell}=-0.15V[/tex]

Now we have to calculate the [tex]E^o_{(Cr^{+6}/Cr^{+3})}[/tex] by using formula,

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

[tex]E^o_{cell}=E^o_{(Ni^{2+}/Ni)}-E^o_{(Cr^{+6}/Cr^{+3})}[/tex]

Now put all the given values in this formula, we get

[tex]-0.15V=-0.28V-E^o_{(Cr^{+6}/Cr^{+3})}[/tex]

[tex]E^o_{(Cr^{+6}/Cr^{+3})}=-0.13V[/tex]

Therefore, the standard reduction potential, [tex]E^o_{(Cr^{+6}/Cr^{+3})}[/tex] is -0.13 V.