Respuesta :
Answer:
[tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \bigg[ 3x^2cosx^3 + 3sin^2(x)cos(x) + 5 \bigg][/tex]
General Formulas and Concepts:
Algebra I
- Functions
- Function Notation
Pre-Calculus
- Trigonometric Notation
Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sin(u)] = u'cos(u)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = (5x + sin^3x + sinx^3)^3[/tex]
Step 2: Differentiate
- Chain Rule: [tex]\displaystyle f'(x) = \frac{d}{dx} \bigg[ (5x + sin^3x + sinx^3)^3 \bigg] \cdot \frac{d}{dx} \bigg[ 5x + sin^3x + sinx^3 \bigg][/tex]
- Basic Power Rule: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^{3 - 1} \cdot \frac{d}{dx} \bigg[ 5x + sin^3x + sinx^3 \bigg][/tex]
- Simplify: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \frac{d}{dx} \bigg[ 5x + sin^3x + sinx^3 \bigg][/tex]
- Derivative Property [Addition]: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ \frac{d}{dx}[5x] + \frac{d}{dx}[sin^3x] + \frac{d}{dx}[sinx^3] \bigg][/tex]
- Rewrite [Trigonometric Notation]: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ \frac{d}{dx}[5x] + \frac{d}{dx}[(sinx)^3] + \frac{d}{dx}[sinx^3] \bigg][/tex]
- Basic Power Rule: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5x^{1 - 1} + \frac{d}{dx}[(sinx)^3] + \frac{d}{dx}[sinx^3] \bigg][/tex]
- Simplify: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \frac{d}{dx}[(sinx)^3] + \frac{d}{dx}[sinx^3] \bigg][/tex]
- Trig Derivative [Derivative Rule - Chain Rule]: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \frac{d}{dx}[(sinx)^3] + \bigg( \frac{d}{dx}[sinx^3] \cdot \frac{d}{dx}[x^3] \bigg) \bigg][/tex]
- Trig Derivative [Basic Power Rule]: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \frac{d}{dx}[(sinx)^3] + \bigg( cosx^3 \cdot 3x^{3 - 1} \bigg) \bigg][/tex]
- Simplify: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \frac{d}{dx}[(sinx)^3] + 3x^2cosx^3 \bigg][/tex]
- Chain Rule: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( \frac{d}{dx}[(sinx)^3] \cdot \frac{d}{dx}[sinx] \bigg) + 3x^2cosx^3 \bigg][/tex]
- Basic Power Rule: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( 3(sinx)^{3 - 1} \cdot \frac{d}{dx}[sinx] \bigg) + 3x^2cosx^3 \bigg][/tex]
- Simplify: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( 3(sinx)^2 \cdot \frac{d}{dx}[sinx] \bigg) + 3x^2cosx^3 \bigg][/tex]
- Trig Derivative: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( 3(sinx)^2 \cdot cos(x) \bigg) + 3x^2cosx^3 \bigg][/tex]
- Simplify [Rewrite]: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + 3sin^2(x)cos(x) + 3x^2cosx^3 \bigg][/tex]
- Rewrite: [tex]\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \bigg[ 3x^2cosx^3 + 3sin^2(x)cos(x) + 5 \bigg][/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e