Respuesta :

[tex]\bf (\stackrel{x_1}{2}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-6}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-6-(-1)}{4-2}\implies \cfrac{-6+1}{2}\implies -\cfrac{5}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-1)=-\cfrac{5}{2}(x-2) \\\\\\ y+1=-\cfrac{5}{2}x+5\implies y=-\cfrac{5}{2}x+4[/tex]