Use the table below of the function f(x) = x4 − 2x3 to answer this question: x f(x) −1 3 0 0 1 −1 2 0 3 27 What is the average rate of change from x = −1 to x = 1?

Respuesta :

[tex]f(x) = x^4 - 2x^3[/tex]

the average rate of change from x = −1 to x = 1

When x= -1 , f(-1)= 3

When x= 1, f(1)= -1

Average rate of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex]

a=-1 , b= 1

Average rate of change = [tex]\frac{f(1)-f(-1)}{1-(-1)}[/tex]

Plug in the values of f(-1)  and f(1)

=  [tex]\frac{-1-3}{1-(-1)}[/tex]

= [tex]\frac{-4}{2} = -2[/tex]

Average rate of change = -2



Answer:

The average rate of change is [tex]-2[/tex]

Step-by-step explanation:

The given function is

[tex]f(x)=x^4-2x^3[/tex]

The average rate of change of [tex]f(x)=x^4-2x^3[/tex]

from [tex]x=-1[/tex] to [tex]x=1[/tex] is the slope of the secant line joining the points.

[tex](-1,f(-1))[/tex] and [tex](1,f(1))[/tex]

From the table,

[tex]f(-1)=3[/tex] and [tex]f(1)=-1[/tex].

Average Rate of Change

[tex]=\frac{f(1)-f(-1)}{1--1}[/tex]

[tex]=\frac{-1-3}{1--1}[/tex]

[tex]=\frac{-4}{2}[/tex]

[tex]=-2[/tex]