Simplify the following exponential expression. Show your work step by step and list the Properties of Exponents used to solve this problem next to your work.

3x^{0}(2x^{3}t^{2})^{4}
___________________
(4x^{7}y^{4})^{2}

Respuesta :

[tex]\frac{3x^0(2x^3t^2)^4}{(4x^7y^4)^2} = \frac{3(1)(2)^4(x^3)^4(t^2)^4}{(4)^2(x^7)^2(y^4)^2}[/tex]      Since, [tex]a^0 = 1[/tex]  and  [tex](ab)^m=a^mb^m[/tex]

[tex]\frac{3x^0(2x^3t^2)^4}{(4x^7y^4)^2} = \frac{3(16)x^{12}t^{8}}{16x^{14}y^8}[/tex]    Since, [tex](a^b)^c=a^{bc}[/tex]

[tex]\frac{3x^0(2x^3t^2)^4}{(4x^7y^4)^2} = \frac{3t^{8}}{x^{14-12}y^8}[/tex]

[tex]\frac{3x^0(2x^3t^2)^4}{(4x^7y^4)^2} = \frac{3t^{8}}{x^{2}y^8}[/tex]

Thus,

[tex]\frac{3x^0(2x^3t^2)^4}{(4x^7y^4)^2} = \frac{3t^{8}}{x^{2}y^8}[/tex]

Given problem is


[tex]\frac{3x^0(2x^3t^2)^4}{(4x^7y^4)^2}[/tex]

distribute outer exponents using formula: [tex](a^mb^n)^c=a^{mc}b^{nc}[/tex], we get:


[tex]=\frac{3x^0(2^4x^{3\cdot4}t^{2\cdot4})}{4^2x^{7\cdot2}y^{4\cdot2}}[/tex]

Simplify exponents:

[tex]=\frac{3x^0(2^4x^{12}t^8)}{4^2x^{14}y^8}[/tex]

plug [tex]x^0=1[/tex]

[tex]=\frac{3\cdot1(2^4x^{12}t^8)}{4^2x^{14}y^8}[/tex]

simplify exponents

[tex]=\frac{3(16x^{12}t^8)}{16x^{14}y^8}[/tex]

simplify (closure property)

[tex]=\frac{48x^{12}t^8}{16x^{14}y^8}[/tex]

simplify exponent part using formula : [tex]\frac{a^m}{a^n}=a^{\left(m-n\right)}[/tex] we get:

[tex]=\frac{3x^{\left(12-14\right)}t^8}{y^8}[/tex]

Simplify exponents:

[tex]=\frac{3x^{\left(-2\right)}t^8}{y^8}[/tex]

send term to denominator to avoid negative exponent

[tex]=\frac{3t^8}{x^2y^8}[/tex]

Hence final answer is [tex]\frac{3t^8}{x^2y^8}[/tex].