The function f(x)= square root of x is translated using the rule (x, y) → (x – 6, y + 9) to create A(x). Which expression describes the range of A(x)?

Respuesta :

frika

The function [tex]f(x)=\sqrt{x}[/tex] is translated according to the rule

[tex](x,y)\rightarrow (x-6,y+9).[/tex]

This translation is translation 6 units to the left and 9 units up.

1. Translation of the function [tex]f(x)=\sqrt{x}[/tex] 6 units to the left gives you the function [tex]g(x)=\sqrt{x+6}.[/tex]

2. Translation of the function [tex]g(x)=\sqrt{x+6}[/tex] 9 units up gives you the function [tex]A(x)=\sqrt{x+6}+9.[/tex]

The domain of the function [tex]A(x)[/tex] is [tex][-6,\infty),[/tex] then the range of the function [tex]A(x)[/tex] is [tex][9,\infty).[/tex]

Answer: [tex][9,\infty).[/tex]

Answer:

The function f(x)= square root of x is translated using the rule (x, y) → (x – 6, y + 9) to create A(x). Which expression describes the range of A(x)?

Step-by-step explanation: