Respuesta :
Answer:
- D = (π/2)hk² . . . . for 8 cylinders
- D = 170.9 in³
Step-by-step explanation:
Substituting the given expressions for bore and stroke and 8 cylinders, you have ...
... D = π((k/2)/2)^2 · h · 8
... D = (π/2)hk^2 . . . . simplified expression for 8 cylinders
_____
For bore = 4 in, stroke = 3.4 in, n = 4, the displacement is ...
... D = π(4 in/2)^2 · (3.4 in) · 4 = 54.4π in^3
... D ≈ 170.9 in^3
Answer:
[tex]85.4[/tex] cubic inch
Step-by-step explanation:
Given-
Displacement = [tex]\pi (\frac{bore}{2} )^2 * stroke * n[/tex]
Now,
bore is represented as [tex]\frac{k}{2}[/tex]
and stroke is represented as [tex]h[/tex]
and number of cylindres "n"[tex]= 8[/tex]
Substituting these values in above equation, we get -
Displacement [tex]= \pi (\frac{\frac{k}{2} }{2})^2*h*8\\= \pi \frac{k^2}{16} * h* 8\\= \frac{\pi* k^2*h}{2}[/tex]
Now substituting the given values, in above equation we get -
Displacement [tex]= \frac{\pi* 4^2*3.4 }{2}\\= \frac{\3.14* 16*3.4 }{2} \\ = 85.408\\= 85.41= 85.4[/tex]cubic inch