Respuesta :

Answer:

(1) B. f(x)->0  as x->∞, f(x)->∞  as x->-∞

(2) D. [tex]f(x)= 2^{-x}+5[/tex]

Step-by-step explanation:

[tex]f(x) = b^x[/tex]. Given 0<b<1

'b' is between 0  and 1  so b should be a fraction

'b' is a fraction, so for positive value of x , the value of f(x) cannot be negative.

the graph of f(x) will goes close to 0 but it never cross x  axis

So end behavior is f(x)->0  as x->∞

for negative values of x , the y value increases

So end behavior is f(x)->∞  as x->-∞

(2)  f(x) = 2^x

When graph reflects across y axis, x becomes -x

so [tex]f(x)= 2^{-x}[/tex]

For translating up by 5 units we add 5  at the end

so [tex]f(x)= 2^{-x}+5[/tex]