Answer: log₂[tex](\frac{h(n)}{6})[/tex] + 1 = n
Step-by-step explanation:
h(n) = 6 * 2ⁿ⁻¹
÷6 ÷6
[tex]\frac{h(n)}{6}[/tex] = 2ⁿ⁻¹
log₂[tex](\frac{h(n)}{6})[/tex] = log₂(2ⁿ⁻¹) →→log₂2 cancels out
log₂[tex](\frac{h(n)}{6})[/tex] = n - 1
log₂[tex](\frac{h(n)}{6})+1[/tex] = n