Respuesta :

Answer: log₂[tex](\frac{h(n)}{6})[/tex] + 1 = n

Step-by-step explanation:

h(n) = 6 * 2ⁿ⁻¹

÷6     ÷6          

[tex]\frac{h(n)}{6}[/tex] = 2ⁿ⁻¹

log₂[tex](\frac{h(n)}{6})[/tex] =  log₂(2ⁿ⁻¹)  →→log₂2 cancels out

log₂[tex](\frac{h(n)}{6})[/tex] = n - 1

log₂[tex](\frac{h(n)}{6})+1[/tex] = n