Find the exponential function that satisfies the given conditions: Initial value = 33, increasing at a rate of 7% per year (2 points)

Respuesta :

Answer:

[tex]f(x)=33*(1.07)^x[/tex]

Step-by-step explanation:

Let f(x) be our exponential growth function representing growth after x years.

We are asked to find the exponential function that satisfies the given conditions: Initial value = 33, increasing at a rate of 7% per year.

Since an exponential growth function is in form: [tex]y=a*(1+r)^x[/tex], where a= initial value of function and r = growth rate in decimal form.

Given:

a=33  

r=7%.

Let us convert our given rate in decimal form.

[tex]7\text{ percent}=\frac{7}{100}=0.07[/tex]

Now let us substitute our given values in exponential function form:

[tex]f(x)=33*(1+0.07)^x[/tex]

[tex]f(x)=33*(1.07)^x[/tex]

Therefore, the exponential function that satisfies our given conditions will be [tex]f(x)=33*(1.07)^x[/tex].