Respuesta :
Answer:
Option A is correct.
Volume of Box 2is [tex]4x^5 - x^4[/tex] cubic units
Step-by-step explanation:
Given the dimensions of box 2 : [tex]x \times (4x-1) \times x^3[/tex]
Length(L) = x units
Breadth(B) = 4x -1 units and
Height(H)= [tex]x^3[/tex] units.
Formula for the volume of Box(V) is given by:
[tex]V = L \times B \times H[/tex]
Substitute the given values we get;
[tex]V = x \times (4x-1) \times (x^3) = x^4 \times (4x-1)[/tex]
Using distributive property [tex]a \cdot(b+c) = a\cdot b+ a\cdot c[/tex]
V = [tex]x^4(4x) - x^4(1)[/tex] = [tex]4x^5 - x^4[/tex] cubic units
therefore, the volume of box 2 is, [tex]4x^5 - x^4[/tex] cubic units
Answer:
Option A is correct.
Volume of Box 2is 4x^5 - x^4 cubic units
Step-by-step explanation:
got it right on the assignment