Respuesta :

Answer:

Option A is correct.

Volume of Box 2is  [tex]4x^5 - x^4[/tex] cubic units

Step-by-step explanation:

Given the dimensions of box 2 : [tex]x \times (4x-1) \times x^3[/tex]

Length(L) = x units

Breadth(B) = 4x -1 units and

Height(H)= [tex]x^3[/tex] units.

Formula for the volume of Box(V) is given by:

[tex]V = L \times B \times H[/tex]

Substitute the given values we get;

[tex]V = x \times (4x-1) \times (x^3) = x^4 \times (4x-1)[/tex]

Using distributive property [tex]a \cdot(b+c) = a\cdot b+ a\cdot c[/tex]

V = [tex]x^4(4x) - x^4(1)[/tex] = [tex]4x^5 - x^4[/tex] cubic units

therefore, the volume of box 2 is,  [tex]4x^5 - x^4[/tex] cubic units

Answer:

Option A is correct.

Volume of Box 2is  4x^5 - x^4 cubic units

Step-by-step explanation:

got it right on the assignment