Respuesta :

Answer:

[tex]65^\circ[/tex]

Step-by-step explanation:

It is given that the measure of angle JKL can be represented by [tex](3x+5)[/tex].

And from the figure we can see that the measure of angle JKL is,

[tex](45^\circ+x^\circ)[/tex]

Both the measures must be equal, hence equating both the angles we get,

[tex](3x+5)=45+x[/tex]

Solving for 'x' we get,

[tex]3x+5=45+x[/tex]

[tex]3x-x=45-5[/tex]

[tex]2x=40[/tex]

[tex]x=\frac{40}{2}[/tex]

[tex]x=20[/tex]

Putting the value of 'x' we can calculate the measure of angle JKL,

[tex]45^\circ+x^\circ=45^\circ+20^\circ=65^\circ[/tex]

Therefore, the measure of angle JKL is, [tex]65^\circ[/tex].

Answer:

answer is 65

hope it helps

Step-by-step explanation: