Respuesta :

Answer:

[tex]S_9=-18.703[/tex].

Step-by-step explanation:

The given series is,

[tex]\sum_{i=1}^9(-\frac{1}{2})^{i-1}[/tex]

When we substitute [tex]i=1[/tex], we get the first term, which is [tex]a_1=-28(-\frac{1}{2})^{1-1}[/tex]


This implies that,

[tex]a_1=-28(-\frac{1}{2})^{0}[/tex]


[tex]a_1=-28(1)=-28[/tex].


The common ratio is

[tex]r=-\frac{1}{2}[/tex]


The finite geometric sum is given by the formula,

[tex]S_n=\frac{a_1(r^n-1)}{r-1} , -1\:<\:r<\:1[/tex].


Since there are 9 terms, we find the sum of the first nine terms by putting [tex]n=9[/tex] in to the formula to get,


[tex]S_9=\frac{-28((-\frac{1}{2})^9-1)}{-\frac{1}{2}-1}[/tex].


[tex]S_9=\frac{-28((-\frac{1}{2})^9-1)}{-\frac{1}{2}-1}[/tex].


[tex]S_9=\frac{-28((-\frac{1}{512})-1)}{-\frac{3}{2}}[/tex].


[tex]S_9=\frac{-28(-\frac{513}{512})}{-\frac{3}{2}}[/tex].


[tex]S_9=-28(\frac{171}{256})[/tex].


[tex]S_9=-\frac{1197}{64}[/tex].



[tex]S_9=-18.703[/tex].


The correct answer is B





Answer:

The correct choice is b. -18.703