Respuesta :

Answer:

y = (x - 8)² - 521

Step-by-step explanation:

the equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

given a quadratic in standard form : ax² + bx + c : a ≠ 0

then the x-coordinate of the vertex is

[tex]x_{vertex}[/tex] = - [tex]\frac{b}{2a}[/tex]

y = 4x² - 64x - 265 is in standard form

with a = 4, b= - 64 and c = - 265

[tex]x_{vertex}[/tex] = -[tex]\frac{-64}{8}[/tex] = 8

substitute x = 8 into the equation for y-coordinate

y = 4(8)² - 64(8) - 265 = 256 - 512 - 265 = - 521

y = (x - 8)² - 521 ← in vertex form