Respuesta :

Answer:

a ≠ 2b

Step-by-step explanation:

The given expression is

[tex]\frac{8ab^{2}x}{4a^{2}b-8ab^{2}}[/tex]

[tex]=\frac{8ab^{2}x}{4ab(a-2b)}[/tex]

Simplifying it, we have

[tex]\frac{8ab^{2}x}{4a^{2}b-8ab^{2}} = \frac{bx}{a-2b}[/tex]

For the above fraction to exist, the denominator must not be equal to zero.

i.e, a-2b ≠ 0

=> a≠2b

∴ The algebraic fraction exists when a≠2b.


Answer:

A valid exclusion for the algebraic fraction is when a=2b

Step-by-step explanation:

You have:

[tex]8ab^2x/4a^2b-8ab^2[/tex]

First you must to simplify:

Taking out common factor 4ab

[tex]4ab(2bx)/4ab(a-2b)[/tex]

[tex]2bx/a-2b[/tex]

The fraction can be written only if  the denominator is different to zero, then

a-2b[tex]\neq[/tex]0

the excluded values are where  

a-2b=0

this expression is equal to 0 when a=2b