Respuesta :
Answer:
a ≠ 2b
Step-by-step explanation:
The given expression is
[tex]\frac{8ab^{2}x}{4a^{2}b-8ab^{2}}[/tex]
[tex]=\frac{8ab^{2}x}{4ab(a-2b)}[/tex]
Simplifying it, we have
[tex]\frac{8ab^{2}x}{4a^{2}b-8ab^{2}} = \frac{bx}{a-2b}[/tex]
For the above fraction to exist, the denominator must not be equal to zero.
i.e, a-2b ≠ 0
=> a≠2b
∴ The algebraic fraction exists when a≠2b.
Answer:
A valid exclusion for the algebraic fraction is when a=2b
Step-by-step explanation:
You have:
[tex]8ab^2x/4a^2b-8ab^2[/tex]
First you must to simplify:
Taking out common factor 4ab
[tex]4ab(2bx)/4ab(a-2b)[/tex]
[tex]2bx/a-2b[/tex]
The fraction can be written only if the denominator is different to zero, then
a-2b[tex]\neq[/tex]0
the excluded values are where
a-2b=0
this expression is equal to 0 when a=2b