1/sec x (tan x + cot x ) =
Options in picture!
PLEASE EXPLAIN !

Answer:
B
Step-by-step explanation:
using the trigonometric identities
• cos x = [tex]\frac{1}{secx}[/tex], sin x = [tex]\frac{1}{cscx}[/tex]
• tan x = [tex]\frac{sinx}{cosx}[/tex], cot x = [tex]\frac{cosx}{sinx}[/tex]
the expression can be rewritten as
cos x([tex]\frac{sinx}{cosx}[/tex] + [tex]\frac{cosx}{sinx}[/tex])
distributing gives
sin x + [tex]\frac{cos^2x}{sinx}[/tex] ( expressing as a single fraction )
= [tex]\frac{sin^2x+cos^2x}{sinx}[/tex] = [tex]\frac{1}{sinx}[/tex] = csc x