Respuesta :

Answer:

[tex]sin(6x) - sin(x)= 2cos(\frac{7x}{2}) * sin(\frac{5x}{2})[/tex]

Step-by-step explanation:

To write sin6x-sinx  as a product , we use formula

[tex]sin(a) - sin(b)= 2cos(\frac{a+b}{2}) * sin(\frac{a-b}{2})[/tex]

We have 6x in the place of 'a'  and x in the place of b

Replace it in the formula

[tex]sin(a) - sin(b)= 2cos(\frac{a+b}{2}) * sin(\frac{a-b}{2})[/tex]

[tex]sin(6x) - sin(x)= 2cos(\frac{6x+x}{2}) * sin(\frac{6x-x}{2})[/tex]

[tex]sin(6x) - sin(x)= 2cos(\frac{7x}{2}) * sin(\frac{5x}{2})[/tex]