Answer:
the maximum height is 1054.500 meters
Step-by-step explanation:
h ( t ) = − 4.9t^2 + 133t + 152
a= -4.9 , b= 133 and c= 152
To find maximum height , we find vertex
[tex]x= \frac{-b}{2a}=\frac{-133}{2(-4.9)}= 13.5714 [/tex]
Now plug in 13.5714 for 't' in h(t)
[tex]h(t) =-4.9t^2 + 133t + 152[/tex]
[tex]h(t)=-4.9( 13.5714)^2 + 133( 13.5714)+ 152=1054.500[/tex]
the maximum height = 1054.500 meters