Respuesta :

Answer:

S∞ = 7       Option C

Step-by-step explanation:

Given that:

∑21[tex](\frac{1}{4} )^{i}[/tex]     i = 1 to ∞

We need to find the sum.

Firstly we will find the sequence

a₁ = [tex]21(\frac{1}{4} )^{1}  = (\frac{21}{4} )[/tex]

a₂ = [tex]21(\frac{1}{4} )^{2}  = (\frac{21}{16} )[/tex]

a₃ = [tex]21(\frac{1}{4} )^{3}  = (\frac{21}{64} )[/tex]

a₄ = [tex]21(\frac{1}{4} )^{4}  = (\frac{21}{256} )[/tex]

this sequence is geometric

So, we use sum of infinite terms

a = [tex]\frac{21}{4}[/tex]

r = [tex]\frac{\frac{21}{16} }{\frac{21}{4} }  = \frac{1}{4}[/tex]

The sum of infinite terms of a GP series

S∞ = [tex]\frac{a}{1-r}[/tex]

where a is first term

r is common ratio and 0<r<1

S∞ = [tex]\frac{\frac{21}{4} }{1 - \frac{1}{4} }  = \frac{\frac{21}{4} }{\frac{3}{4} }[/tex]

S∞ = 7