James and Terry open a savings account that has a 2.75% annual interest rate, compounded monthly. They despoit $400. Into the account each month. How much will be in the account after 20 years.





Respuesta :

Answer:

$128,088.54

Step-by-step explanation:

Year Year Deposits Year Interest Total Deposits Total Interest Balance

1  $4,800.00  $72.10  $4,800.00  $72.10  $4,872.10

2  $4,800.00  $207.79  $9,600.00  $279.89  $9,879.89

3  $4,800.00  $347.25  $14,400.00  $627.15  $15,027.15

4  $4,800.00  $490.60  $19,200.00  $1,117.74  $20,317.74

5  $4,800.00  $637.94  $24,000.00  $1,755.68  $25,755.68

6  $4,800.00  $789.38  $28,800.00  $2,545.06  $31,345.06

7  $4,800.00  $945.04  $33,600.00  $3,490.11  $37,090.11

8  $4,800.00  $1,105.04  $38,400.00  $4,595.14  $42,995.14

9  $4,800.00  $1,269.49  $43,200.00  $5,864.63  $49,064.63

10  $4,800.00  $1,438.52  $48,000.00  $7,303.15  $55,303.15

11  $4,800.00  $1,612.26  $52,800.00  $8,915.41  $61,715.41

12  $4,800.00  $1,790.83  $57,600.00  $10,706.24  $68,306.24

13  $4,800.00  $1,974.38  $62,400.00  $12,680.62  $75,080.62

14  $4,800.00  $2,163.05  $67,200.00  $14,843.67  $82,043.67

15  $4,800.00  $2,356.96  $72,000.00  $17,200.63  $89,200.63

16  $4,800.00  $2,556.28  $76,800.00  $19,756.91  $96,556.91

17  $4,800.00  $2,761.14  $81,600.00  $22,518.05  $104,118.05

18  $4,800.00  $2,971.72  $86,400.00  $25,489.77  $111,889.77

19  $4,800.00  $3,188.15  $91,200.00  $28,677.92  $119,877.92

20  $4,800.00  $3,410.62  $96,000.00  $32,088.54  $128,088.54

Answer:

The account after 20 years is $73798.8.

Step-by-step explanation:

Given : James and Terry open a savings account that has a 2.75% annual interest rate, compounded monthly. They despoit $400. Into the account each month.

To find : How much will be in the account after 20 years ?

Solution :

Using monthly payment formula,

[tex]M=\frac{\text{Amount}}{\text{Discount factor}}[/tex]

Discount factor is [tex]D=\frac{1-(1+i)^{-n}}{i}[/tex]

Substitute in the formula,

[tex]\text{Amount}=M\times \frac{1-(1+i)^{-n}}{i}[/tex]

Where, M=$400 amount deposited monthly

r= 2.75%=0.0275 is the interest rate

[tex]i=\frac{0.0275}{12} =0.00229[/tex]

t=20 years is the time

[tex]n=12\times 20=240[/tex]

Substitute the value,

[tex]\text{Amount}=400\times \frac{1-(1+0.00229)^{-240}}{0.00229}[/tex]

[tex]\text{Amount}=400\times \frac{1-0.5775}{0.00229}[/tex]

[tex]\text{Amount}=400\times 184.497[/tex]

[tex]\text{Amount}=73798.8[/tex]

Therefore, the account after 20 years is $73798.8.