Respuesta :

Answer:

[tex]\cos\left(\theta\right)=\frac{\sqrt{15}}{4}[/tex]

Step-by-step explanation:

Given that [tex]\sin\left(-\theta\right)=-\frac{1}{4}[/tex] and [tex]\tan\left(\theta\right)=\frac{\sqrt{15}}{15}[/tex]

Using those values we need to find value of [tex]\cos\left(\theta\right)[/tex]

So let's begin with equation of  [tex]\tan\left(\theta\right)=\frac{\sqrt{15}}{15}[/tex] and simplify it to get value of  [tex]\cos\left(\theta\right)[/tex]

[tex]\tan\left(\theta\right)=\frac{\sqrt{15}}{15}[/tex]


[tex]\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}=\frac{\sqrt{15}}{15}[/tex]

[tex]\sin\left(\theta\right)=\frac{\sqrt{15}}{15}\cos\left(\theta\right)[/tex]

[tex]\sin\left(\theta\right)\cdot\frac{15}{\sqrt{15}}=\cos\left(\theta\right)[/tex]

[tex]\cos\left(\theta\right)=\sin\left(\theta\right)\cdot\frac{15}{\sqrt{15}}[/tex]

[tex]\cos\left(\theta\right)=-\sin\left(-\theta\right)\cdot\frac{15}{\sqrt{15}}[/tex]  {since [tex]\sin\left(-\theta\right)=-\sin\left(\theta\right)[/tex] }

[tex]\cos\left(\theta\right)=-\sin\left(-\theta\right)\cdot\sqrt{15}[/tex]

[tex]\cos\left(\theta\right)=-\left(-\frac{1}{4}\right)\cdot\sqrt{15}[/tex]

[tex]\cos\left(\theta\right)=\frac{\sqrt{15}}{4}[/tex]

Answer:

[tex]\cos \theta = \frac{\sqrt{15}}{4}[/tex]

Step-by-step explanation:

The sine function is an odd function, that is:

[tex]\sin (-\theta) = - \sin \theta[/tex]

Then,

[tex]\sin \theta = \frac{1}{4}[/tex]

The cosine function is computed by the following relation:

[tex]\cos \theta = \frac{\sin \theta}{\tan \theta}[/tex]

[tex]\cos \theta = \frac{\frac{1}{4} }{\frac{\sqrt{15}}{15} }[/tex]

[tex]\cos \theta = \frac{\frac{1}{4} }{\frac{1}{\sqrt{15}} }[/tex]

[tex]\cos \theta = \frac{\sqrt{15}}{4}[/tex]