Respuesta :

Answer:

Solutions of x are;

x = -7 + 8i and x = -7 -8i

Step-by-step explanation:

Given the equation: [tex]x^2+14x+17 = -96[/tex]

Add 96 both sides we get;

[tex]x^2+14x+17+96 = 0[/tex]

[tex]x^2+14x+113= 0[/tex]

Using quadratic formula [tex]ax^2+bx+c = 0[/tex] then the solution is given by:

[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

On comparing we have;

a= 1,  b =14 and c =113

[tex]x = \frac{-14\pm\sqrt{(14)^2-4(1)(113)}}{2(1)}[/tex]

[tex]x = \frac{-14\pm\sqrt{196-452}}{2}[/tex]

or

[tex]x = \frac{-14\pm\sqrt{-256}}{2}[/tex]

Simplify:

[tex]x = \frac{-14\pm 16i}{2}[/tex] ;  where i is the imaginary, [tex]i^2= -1[/tex]

or

[tex]x = -7 \pm 8i[/tex]

Therefore,  the solution of x are;  x = -7 + 8i and x = -7 -8i